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Abstract

In the present work, three different techniques are used to separate ice-nucleating
particles (INP) and ice particle residuals (IPR) from non-ice-active particles: the Ice
Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI), which sample
ice particles from mixed phase clouds and allow for the analysis of the residuals, as5

well as the combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nu-
clei Pumped Virtual Impactor (IN-PCVI), which provides ice-activating conditions to
aerosol particles and extracts the activated ones for analysis. The collected particles
were analyzed by scanning electron microscopy and energy-dispersive X-ray micro-
analysis to determine their size, chemical composition and mixing state. Samples were10

taken during January/February 2013 at the High Alpine Research Station Jungfraujoch.
All INP/IPR-separating techniques had considerable abundances (median 20–70 %) of
contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-
O particles; FINCH+ IN-PCVI: steel particles). Also, potential measurement artifacts
(soluble material) occurred (median abundance < 20 %). After removal of the contam-15

ination particles, silicates and Ca-rich particles, carbonaceous material and metal ox-
ides were the major INP/IPR particle types separated by all three techniques. Minor
types include soot and Pb-bearing particles. Sea-salt and sulfates were identified by
all three methods as INP/IPR. Lead was identified in less than 10 % of the INP/IPR. It
was mainly present as an internal mixture with other particle types, but also external20

lead-rich particles were found. Most samples showed a maximum of the INP/IPR size
distribution at 400 nm geometric diameter. In a few cases, a second super-micron maxi-
mum was identified. Soot/carbonaceous material and metal oxides were present mainly
in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly
with diameters above 1 µm, while the Ice-CVI also sampled many submicron particles.25

Probably owing to the different meteorological conditions, the INP/IPR composition was
highly variable on a sample to sample basis. Thus, some part of the discrepancies be-
tween the different techniques may result from the (unavoidable) non-parallel sampling.
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The observed differences of the particles group abundances as well as the mixing state
of INP/IPR point to the need of further studies to better understand the influence of the
separating techniques on the INP/IPR chemical composition.

1 Introduction

The impact of clouds – and in particular cloud-aerosol interactions – on the earth’s5

radiation balance is still one of the most uncertain aspects in our understanding of the
climate system (Flato et al., 2013). The understanding of tropospheric cloud ice for-
mation processes is crucial for predicting precipitation and cloud radiative properties.
Aerosol-cloud interactions play a key role in determining cloud properties like phase,
size distribution and colloidal stability of the cloud elements, as well as the lifetime,10

dimensions and precipitating efficiency of the cloud. Though there has been an ad-
vance during the last decades, in particular for aerosol-cloud-interactions, the level
of scientific understanding is still classified as “very low” to “low” (Flato et al., 2013).
A considerable uncertainty of the response of aerosol and cloud processes to changes
in aerosol properties still arises from the lack of fundamental understanding of the in-15

teraction of aerosol particles with the cloud ice phase (Lohmann and Feichter, 2005).
One particular problem in understanding the INP properties of atmospheric aerosol is
the small data base of field measurements.

Many ice nucleation experiments were performed under laboratory conditions (e.g.,
Hoose and Möhler, 2012), and provided knowledge on principle INP properties of pure20

components and artificially generated mixtures. Mineral dust and biological particles
are regarded in general as efficient INP, while experiments disagreed on the INP abil-
ities of soot and organics (Hoose and Möhler, 2012). Sea-salt and sulfate are usually
not considered as INP. However, it was shown recently for NaCl particles that a par-
tial efflorescence under suitable conditions might lead to NaCl ice activation (Wise25

et al., 2012). The situation is more complex in the ambient atmosphere, where par-
ticles are usually present as a mixture of different compounds and get modified by
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heterogeneous processes, which may then lead to modified INP properties. In labora-
tory experiments, these effects are currently addressed for single substances (Hoose
and Möhler, 2012; Wex et al., 2014), but the level of atmospheric mixing complexity is
not yet reached. Therefore, field measurements are highly needed.

Several techniques emerged in particular during the last decade, which are capa-5

ble to provide selectively sampled INP or IPR for further chemical analysis. Techniques
measuring the INP ability of aerosol particles usually expose a sampled aerosol to ther-
modynamic conditions favoring ice nucleation, after which the activated particles are
separated from the non-activated ones. Examples of these techniques are the Fast Ice
Nucleus Chamber (FINCH) (Bundke et al., 2008) in combination with the IN- pumped10

counterflow virtual impactor (IN-PCVI) (Schenk, 2014) and the Frankfurt Ice Nuclei De-
position Freezing Experiment (FRIDGE) (Klein et al., 2010; Bundke et al., 2008). While
in FINCH the particles are kept airborne, ice nucleation occurs on an ice-inert substrate
in FRIDGE. In contrast, analysis of IPR relies on the natural selection of INP by a cloud.
While for cirrus clouds all cloud elements can be investigated (Cziczo and Froyd, 2014),15

for mixed phase clouds the ice particles need to be separated from droplets. Ice par-
ticle separation is currently done either by the Bergeron–Findeisen process, whereby
droplets present in the sample flow are evaporated in an ice-saturated environment,
with an Ice Selective Inlet (P. Kupiszeski et al., personal communication, 2014) and
subsequent selection of the larger cloud elements with a pumped counterflow virtual20

impactor. Alternatively, cloud elements are impacted on a cooled surface collecting the
droplets while bouncing the ice particles for further analysis (Ice-CVI) (Mertes et al.,
2007).

In the present work, three state-of-the-art techniques for INP/IPR sampling – ISI,
Ice-CVI and FINCH+ IN-PCVI – were operated in parallel in a joint field experiment to25

sample atmospheric mixed-phase clouds and characterize the sampled INP/IPR with
respect to their morphology, chemical composition, particle size and particle mixing
state.
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2 Experimental

In January/February 2013, a field campaign of INUIT (Ice Nuclei Research Unit) was
performed at the High Alpine Research Station Jungfraujoch in Switzerland (JFJ,
3580 m a.s.l., 46.55◦ N, 7.98◦ E), as part of the Cloud and Aerosol Characterization Ex-
periment (CLACE) 2013. Ice-nucleating particles (INP) and ice particle residuals (IPR),5

separated from the interstitial aerosol and droplets by ISI and Ice-CVI and from the to-
tal aerosl by FINCH+ IN-PCVI (Table 1), were collected by impactors and analyzed
by scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis
(EDX). In addition, the INP/IPR were analyzed by laser ablation mass spectrometry
(LA-MS).10

2.1 INP/IPR differentiation

INP were detected by the FINCH+ IN-PCVI (Bundke et al., 2008). The atmospheric
aerosol particles were sampled by a total aerosol inlet (Weingartner et al., 1999) and
transported into FINCH+ IN-PCVI.

IPR were collected via selective sampling of small (< 20 µm aerodynamic diameter)15

ice crystals with ICE-CVI and ISI, and subsequent heating of the sampled crystals
(resulting in release of the IPR). The extracted IPR were collected with a two-stage
impactor system (see above).

For the scanning electron microscopy analysis the released INP were collected by
a two-stage impactor using circular nozzles of 0.7 and 0.25 mm at a flow rate of20

7.5 cm3 s−1 (volume), leading to approximate 50 % cut-off efficiency aerodynamic di-
ameters of 1 and 0.1 µm, respectively (for details on impactor dimensions see Kan-
dler et al., 2007). Transmission electron microscopy grids (type S162N9, Plano GmbH,
Wetzlar, Germany) and polished elemental boron embedded in a conductive resin were
used as impaction substrates.25
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2.1.1 Coupling of FINCH and IN-PCVI

Aerosol particles were sampled from the atmosphere by a total aerosol inlet
(Weingartner et al., 1999) and transported into FINCH, in which a supersaturation with
respect to ice is achieved by mixing air flows with different temperature and humidity.
Ice nucleating particles are activated, grow while flowing through the chamber, and are5

counted in an optical particle counter (OPC). The OPC used in this instrument is able
to distinguish between supercooled water droplets and ice crystals by analyzing the po-
larization ratio of the scattered circular polarized light (P44/P11 ratio of the scattering
matrix; Hu et al., 2003). Also, the auto-fluorescence resulting from the excitation of the
grown particles with UV light is detected (Bundke et al., 2010), which is an indication10

for biological particle material.
In a second step, particles that had grown to ice crystals were separated (IN-PCVI)

(Schenk et al., 2014) from the remaining non-activated and therefore hardly grown
aerosol particles and small supercooled droplets. This is realized by a counterflow that
meets the FINCH output flow which is at the same time the IN-PCVI input flow. During15

the INUIT-JFJ 2013 campaign the adjusted counterflow to input flow ranges leads to
cut off diameters between 4.5–8 µm. The sampled FINCH ice particles evaporate while
they are transported in a dry particle free air flow within the IN-PCVI.

During INUIT-JFJ 2014, FINCH+ IN-PCVI was connected to a total aerosol inlet and
sampled approximately 2.25 L min−1 aerosol flow. Supersaturation and freezing tem-20

perature were varied during the campaign.

2.1.2 Ice-CVI

From the mixed-phase clouds prevailing at JFJ, the ice particle residuals were collected
by the so-called Ice-CVI (Mertes et al., 2007). It consists of a series of different modules
that allow the sampling of small ice particles by a simultaneous pre-segregation of all25

other cloud constituents. The vertical, omni-directional inlet already reduces the sam-
pling of ice crystals larger than 50 µm, including precipitating or windblown ice particles.
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A virtual impactor downstream the inlet horn limits the upper size of sampled hydrom-
eteors to 20 µm. This limit is reasonable, because the collection efficiency is nearly 1
for these ice particle sizes. The ice particle break-up is minimized in the subsequent
Ice-CVI components, and ice particles in this size range grow by water vapour diffu-
sion, i.e. they should contain only the former INP as a residual particle. Downstream of5

the virtual impactor a pre-impactor removes supercooled drops by contact freezing on
cold impaction plates. Ice particles bounce and pass the impaction plates. A conven-
tional CVI (Mertes et al., 2005a, b) is located downstream of the pre-impactor to reject
interstitial particles smaller than 5 µm. Thus, only ice particles in the 5–20 µm diame-
ter range completely traverse the Ice-CVI. As with a conventional CVI these small ice10

crystals are injected into a particle-free and dry carrier gas which leads to evaporation
and allows the analysis of the ice particle residues.

2.1.3 Ice Selective Inlet (ISI)

The novel Ice Selective Inlet (ISI) was designed to extract small ice crystals from
mixed-phase clouds, simultaneously counting, sizing and imaging the hydrometeors15

contained in the cloud with the use of WELAS (white light aerosol spectrometers) 2500
sensors and a Particle Phase Discriminator (PPD-2K). The core of ISI is a droplet
evaporation unit with ice-covered inner walls, removing droplets using the Bergeron–
Findeisen process, while transmitting the ice crystals. In the final stage of ISI, a pumped
counterflow virtual impactor removes interstitials and cloud condensation nuclei re-20

leased in the droplet evaporation unit from the sample flow, thus ensuring only ice
crystals are transmitted. The extracted ice crystals are subsequently sublimated, re-
leasing the ice particle residuals (IPR), which are transferred into the laboratory for
further on- and offline characterization of their physical and chemical properties.
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2.1.4 Laser Ablation Spectrometry (LA-MS)

The deployed laser ablation aerosol spectrometer was the ALABAMA (Aircarft-based
Laser Ablation Aerosol Mass Spectrometer) which was originally developed for aircraft
operation at MPIC (Brands et al., 2011), but has since also then been used in several
ground-based measurement projects. It provides the chemical composition of single5

aerosol particles in an aerodynamic particle size range between 150 and 1500 nm,
including refractory compounds such as metals, dust, and soot. It was used during the
INUIT-JFJ campaign for the analysis of background aerosol particles and IPR (Schmidt
et al., 2014). The IPR were sampled through the Ice-CVI (1663 mass spectra during
104 h) and through the ISI (146 mass spectra in 32 h).10

2.2 Sample analysis by electron microscopy

Forty six samples were acquired during the field campaign. All samples were ana-
lyzed by scanning electron microscopy (FEI Quanta 200 FEG, FEI, Eindhoven, the
Netherlands) and energy-dispersive X-ray microanalysis (EDX, EDAX, Tilburg, the
Netherlands). The particles were manually characterized with respect to their chem-15

ical composition, size, morphology, internal mixing state and stability under electron
bombardment. Particle size was determined as average geometrical diameter from the
electron images. In addition, automated particles analysis controlled by the software
Genesis 5.11 (AMETEK, Wiesbaden, Germany) was performed. Results from the au-
tomated analysis were classified based on the chemical composition of the particles20

only (Scheuvens et al., 2011).

2.3 Particle classification

Based on chemical composition, morphology mixing state and beam stability, 18 par-
ticle classes were defined and combined into 11 particles classes. Table 2 lists the
particle groups, particle classes and classification criteria for the manual analysis.25
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Pb-bearing particles are classified according to the presence of Pb only. They might
be homogeneous Pb-rich particles or particles containing Pb-rich inclusions. In the
latter case, the main matrix particles can be carbonaceous, soot, sulfate, sea-salt, sil-
icate, metal oxide, a droplet or belong to the “other” class. Droplets are identified by
their typical morphology of larger residual particles centered in a halo of small residu-5

als, originating from the splashing of the droplet at impaction. The center of the resid-
ual can consist of unstable (e.g. sulfate) or stable sea-salt, silicate, metal oxide, Ca-
rich particles, or mixtures thereof. The halo particles are usually unstable under elec-
tron bombardment. Particles which could not be classified according to the criteria are
summarized in the particle class “other”. This particle class includes Zn-rich, Mg-rich10

particles as well as Sn-, Ba-, Bi- and Br-bearing particles.
The automated particle analysis does not yield suitable information on particle mor-

phology. Thus, carbonaceous and soot particles cannot be distinguished. In addition,
droplets are not recognized by automated analysis. Therefore, the morphology infor-
mation was obtained by manual analysis in all samples, except for one sample of total15

aerosol. In this one sample, residues of droplets are classified as sea-salt, silicate with
coating, metal oxide with coating, Ca-rich particle with coating or as unstable sulfate.

Due to the difference in sample substrate composition between TEM grids and el-
emental boron, in particular for the detection of carbonaceous particles and thin car-
bonaceous coatings, systematic deviations can occur with a bias towards better detec-20

tion of these particles on boron.

2.4 Sampling location and meteorology

The JFJ station is located in a saddle between the mountains Jungfrau and Mönch,
which is oriented WSW – NNE. This topography results in a channeling of the atmo-
spheric flow leading to a near-binary distribution of wind directions as either NW or25

SSE. The atmospheric conditions during the campaign are illustrated in Fig. 1. Hourly
5 day backward trajectories for the JFJ station were calculated with the HYSPLIT model
based on GDAS data (Draxler and Rolph, 2013).
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At the top of Fig. 1, periods with comparatively homogeneous atmospheric condi-
tions during which samples using different techniques are marked. Homogeneity was
determined from meteorology, particle concentrations and changes in air mass prove-
nance. Details are given for period A, as samples are compared below for this time
period.5

Period A: 2 February/13:00–18:00 (UTC): air mass backward trajectories cross
France at an altitude of 0.5 km for about half a day, and the northwestern tip of Spain
for a few hours. For the rest of the 4.5 days trajectory length, the air masses were in
the free troposphere over the Atlantic Ocean west and southwest of France and Spain.
Wind, temperature and in-cloud conditions were very stable during this period. While10

the JFJ is usually in the free troposphere during the winter months (Collaud Coen
et al., 2011), abrupt increases in particle concentrations may indicate a rise in the at-
mospheric boundary layer height to the station altitude which leads to a local influence.
This effect is visible as a sudden increase in particle concentration in the middle of
this period. We consider period A as of Atlantic/free-troposphere origin with minor local15

influence.

3 Results

3.1 Artifact particles

3.1.1 Contamination artifact particles from the INP/IPR sampling instruments

The sampling instruments yielded different types of artifact particles indicated by their20

clear non-atmospheric origin. Therefore, they were removed from further analysis. Fig-
ure 2 shows secondary electron images of the most common contamination artifact
particles and their energy-dispersive X-ray spectra. The relative abundance of the dom-
inating artifact particles for each instrument is shown in Fig. 3.
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With all three sampling techniques, minor amounts of Fe-Cr particles are observed
as an artifact. They may derive from internal abrasion of the instrument or tubing. For
the samples collected on boron substrates, in addition Cu-rich particles are present as
artifacts, which fragment from the embedding material of the boron substrates.

In the ISI samples, mainly Si-O spheres with a size of approx. 1 µm are observed5

as artifacts. These particles were most likely introduced into the instrument during cal-
ibration of the optical particle spectrometers contained within the inlet. The abundance
of Si-O spheres in the samples ranged from 26 to 94 %. Including the Fe-Cr-rich and
Cu-rich artifacts, the abundance of all artifact particles ranged from 46 to 94 % during
the measurement period.10

In the FINCH+ IN-PCVI samples, Fe-Cr-rich and Cu-rich particles as well as a few
Au/Ag particles (not shown as image) were identified as instrumental artifact. Their
abundance ranged from 12 to 60 % with a median of 20 %.

In the Ice-CVI samples, Al-O particles – probably aluminium oxides/hydroxides – oc-
cur as artifact particles originating most likely from the impaction plates. The relative15

abundance of these Al-O particles varied in the range of 10–94 %. As all Al-O parti-
cles are classified as artifacts in the present paper, potentially occurring atmospheric
aluminium oxides/hydroxide particles in the Ice-CVI would be overlooked. However, it
can be safely assumed that this potential error is minor, as no Al-O particles with the
characteristic morphology (Fig. 2) were identified with the other two sampling instru-20

ments. The abundance of other artifact particles in the Ice-CVI sample is small (range
of 0–8 %).

In summary, it must be concluded that the abundance of contamination artifacts
in the separated INP and IPR is generally large and cannot be neglected. Thus, the
INP/IPR concentrations must be corrected to obtain accurate results. It is highly rec-25

ommended that measurements of INP/IPR concentrations are always accompanied
by chemical and morphological single particle characterization in order to avoid large
systematic errors caused by contamination artifacts.
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3.1.2 Potential INP/IPR sampling artifacts

In addition to contamination artifacts, INP/IPR sampling artifacts seem to occur. We
define sampling artifacts as particles which pass the selection mechanisms similar
to INP/IPR, but are not expected to act as INP/IPR. The potential sampling artifacts
include sea-salt particles, sulfate particles and particles which impact on the sampling5

substrates as droplets. As we cannot exclude that these particles may have acted as
INP/IPR, we do not exclude them from further analysis in contrast to the contamination
artifacts.

Droplets are characterized by their morphology of a residue with a halo (Fig. 4). While
in principle the heating and drying line should lead to total evaporation of particle-bound10

water, obviously some particles were still in liquid state during impaction sampling.
As we cannot distinguish incompletely dried ice residuals from super-cooled droplets,
which were falsely identified as INP/IPR, we consider droplets as artifacts. This is sup-
ported by the fact that the droplet residuals were composed either mainly of sulfate or
the residuals were volatile, neither of these residual types are expected to be efficient15

INP/IPR.
As expected, the sulfate particles were preferentially found in the submicron size

range, while sea-salt particles have a tendency to be of larger sizes. Droplets, however,
occur rather uniformly in sub-/supermicron sizes.

The relative number abundance of the three potential sampling artifacts (droplets,20

(non-droplet) sulfate and sea-salt) is shown in Fig. 5 as box-plot, separately for each
INP/IPR sampling instrument. All INP/IPR sampling artifacts are observed for all three
techniques, and their relative abundances are on comparable levels of 0–10 % for each
particle type. However, in particular the Ice-CVI extracted a higher number of sea-
salt particles as INP/IPR. For single measurements, the abundance of these potential25

sampling artifacts can reach up to 40 %.
The occurrence of sea-salt particles and of sea-salt as residual in droplets depends

on the backward trajectory of the air mass. Sea-salt occurs only as INP/IPR when
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marine air masses were sampled. In these cases, sea-salt is present in samples from
all instruments.

3.2 Composition of INP/IPR at the Jungfraujoch in winter

During the field campaign 180 samples were taken, of which 7 ISI, 22 FINCH+ IN-
PCVI, and 14 ICE-CVI samples were analyzed with a total (non-artifact) INP/IPR parti-5

cle number of approximately 2544. Due to the low number of collected INP/IPR on in-
dividual samples, the INP/IPR from all samples were added for each technique (Fig. 6)
to yield better statistics. Particles were differentiated according to their size in a sub-
and supermicron range.

Silicates are the main group of INP/IPR independently of sampling techniques. With10

all three sampling instruments, soot and sulfate particles occur mainly in the submicron
range, while silicates and Ca-rich particles are predominantly found in the supermicron
range. Metal oxides are present in both size ranges with a tendency to the submicron
range while sea-salt particles tend to be in the supermicron range. However, if the low
number of analyzed particles and the resulting statistical uncertainty are considered,15

the observed differences between the techniques are regarded only as a trend. In ad-
dition, the three instruments could not be operated strictly in parallel and thus, sampled
different time periods. In particular, ISI samples were taken only at the end of the field
campaign.

The main difference in composition trends between the three sampling methods are20

the high content of carbonaceous particles measured downstream of the ISI, and the
high content of Pb-bearing particles obtained by Ice-CVI. The high concentration of
carbonaceous particles in the ISI-samples may result from different air masses being
sampled at the end of the field campaign, when ISI was operated. During this time,
higher black carbon concentrations were measured than during the earlier periods (not25

shown). The Pb-bearing particles are discussed later in Sect. 4.4 in more detail.
If the eleven particle classes are grouped into four simplified components – parti-

cles of potential terrigenous origin (i.e., silicates and Ca-rich particles), C-dominated
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particles (carbonaceous, soot), metal-oxides-dominated and soluble particles (sulfate,
droplets, sea-salt) –the terrigenous particles are the main component with relative
abundances of 40 % (ISI), 51 % (FINCH+ IN-PCVI) and 55 % (Ice-CVI). The C-rich
particles show a higher variation due to sampling of different air masses and range
from 9 % (Ice-CVI), 13 % (FINCH+ IN-PCVI) to 35 % (ISI). The soluble particles vary5

between 19 % (ISI and Ice-CVI) and 32 % (FINCH+ IN-PCVI).
The composition of the INP/IPR-samples varies between the cloud events and be-

tween the INP/IPR sampling techniques. Figure 7 illustrates the heterogeneity of the
INP/IPR composition with the example of the 2 February, where relatively stable at-
mospheric conditions prevailed. During this period, two samples were taken between10

17:40–18:10 (Ice-CVI) and 14:50–17:11 (FINCH+ IN-PCVI).
The major components show quite a consistent INP/IPR composition here, i.e., dom-

inating silicates with a fraction of 71 % (Ice-CVI) and 65 % (FINCH+ IN-PCVI) as well
as the presence of organics and metal oxides. However, the relative abundance of
the minor INP/IPR groups differs considerably. In particular, the group of carbonaceous15

particles shows a large difference between Ice-CVI (4 %) and FINCH+ IN-PCVI (19 %),
the same is true for the metal oxides abundance (5 % Ice-CVI, 10 % FINCH+ IN-PCVI).
Additionally, the ICE-CVI sample contains Pb-bearing particles (12 %) and sea-salt par-
ticles (2 %), which are absent for the FINCH+ IN-PCVI sample.

3.3 Size distribution of INP/IPR components20

To allow for the display of a size distribution, again we combined the detailed groups
into generalized components of INP/IPR to achieve higher particle counts for each
particle size interval. The resulting size distributions are shown in Fig. 8, separately for
each sampling technique.

All three methods yield a maximum in the size distribution between 0.3 to 0.5 µm25

geometric diameter, whereas ISI shows a secondary maximum around 1 to 1.5 µm.
Silicates and Ca-rich particles are predominantly found at the larger particles sizes
as expected, which is particular visible for the FINCH+ IN-PCVI samples. The relative
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abundance of carbonaceous/soot is highest with the smallest particles, as is the relative
abundance of the metal oxides. Again, the soluble and secondary particles do not show
a particular size preference.

The maximum in the size distribution is more pronounced in the Ice-CVI samples
than in FINCH+ IN-PCVI and ISI samples, while ISI shows the highest relative abun-5

dance of larger particles.

3.4 Composition of total aerosol

In addition to INP/IPR composition measurements, the composition of the total aerosol
was also determined for a few days. Samples of the total aerosol were taken using
the Ice-CVI setup, but without the ice-selective components operating. Samples were10

collected at 30 January from 13:22 to 13:26 and at 16 February from 17:26 to 17:43
(UTC). While the 30 January sample was analyzed automatically, the 16 February sam-
ple was investigated manually. Therefore, droplets could be identified by morphology
in the latter case. The background composition for 16 February is shown in Fig. 9 as
function of particle size.15

The background aerosol is dominated by sulfate and droplets (relative number abun-
dance ∼ 86–92 %) each. Silicate, soot and carbonaceous particles occur as minor com-
ponents. The distribution of sulfate and droplets is inhomogeneous over the size range
of the particles. Small particles (< 0.5 µm) are dominated by sulfates (approximately
75 %). The size range of 0.5 to 1 µm is dominated by the droplets. At larger particle20

size, both particle types occur. For the automatically analyzed sample, droplets could
not be identified and were mainly classified as sulfates. Accordingly, the total aerosol
of 16 February is dominated by sulfate particles. However, a larger amount of silicate
particles (approximately 25 % of the particles > 1 µm) is present on this day.
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3.5 Mixing state and Pb-bearing INP/IPR

A significant fraction of the INP/IPR consists of particles with coatings or inclusions
(see groups in Fig. 6). The relative abundance of internally mixed particles for each
particle type is summarized in Table 3. It is apparent that mainly silicate particles and
to a lesser extent metal oxides are internally mixed. Mixing partners are mostly sulfate5

and carbonaceous matter, but also sea-salt, if present in the total aerosol. The other
particles types are less frequently internally mixed. Regarding differences between the
sampling techniques, in particular INP measured by FINCH+ IN-PCVI are considerably
more frequently internally mixed than IPR of the ISI and Ice-CVI. The (non-droplet) sul-
fates obtained as INP/IPR contain in most cases no heterogeneous inclusions. Also,10

most of the soot and Ca-rich particles have no coating, which is consistent for all sam-
pling techniques. In contrast, the mixing state of carbonaceous particles was found to
be highly different, rarely mixed for ISI (7 %) and frequently mixed for FINCH+ IN-PCVI
(64 %).

In previous IPR measurements at the JFJ station (Ebert et al., 2011; Cziczo et al.,15

2009b), Pb-bearing particles were found at high abundance. For comparison with
the previous work (Fig. 10), we have selected the Pb-bearing particles from the to-
tal INP/IPR and determined their mixing partner. For comparability, the particles were
classified in the same way as for the CLACE 5 campaign (Ebert et al., 2011). Pb-
bearing particles are only found with Ice-CVI and FINCH+ IN-PCVI. The Pb inclusions20

occur within the same main particle classes identified as INP/IPR in general, i.e., mainly
silicates, Ca-rich particles, sulfates, sea-salt, and carbonaceous particles. In addition,
externally mixed (homogeneous) Pb-bearing particles are present at minor abundance.
While fewer externally mixed Pb-bearing particles were observed in the present field
campaign (compared to Ebert et al., 2011), the abundance of the other Pb-bearing25

groups seems to be similar.
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4 Discussion

4.1 Which particle classes can be regarded as INP/IPR?

Silicates have been identified as common INP/IPR in laboratory experiments as well
as in field experiments (Hoose and Möhler, 2012; Murray et al., 2012). Also in our
field campaign, silicates are the most abundant INP/IPR type. Ca-rich particles – e.g.,5

carbonates like calcite – are not frequently regarded as INP, in particular as they might
be subsumed with silicates as “dust” (e.g., Murray et al., 2012). However, laboratory
experiments have shown that calcite can act as INP (Zimmermann et al., 2008), so
also the Ca-rich particles are regarded as INP/IPR.

Metal oxides are also common ice residuals in field experiments (Chen et al., 1998;10

DeMott et al., 2003). Similar to our study, Fe-rich particles are the main group within
the metal oxides. In addition, Al-, Ti-, Zn-, Cr-, and Ca-rich particles were found in our
study and by Chen et al. (1998).

The ice nucleation ability of soot and carbonaceous particles is discussed contro-
versially in previous literature. While an enrichment of black carbon in ice residuals15

has been observed in field experiments (Cozic et al., 2008) there are also other find-
ings where organic-rich particles preferentially remain unfrozen (Cziczo et al., 2004).
It has to be mentioned, however, that carbon-rich particles are sometimes named am-
biguously depending on the technique used for analysis (see also Murray et al., 2012;
Petzold et al., 2013). Thus, uncertainties may arise from ambiguous identification of20

carbonaceous particles. Laboratory experiments show that the ice forming activity of
soot is influenced by size, surface area and the concentration of the surface chemi-
cal groups that can form hydrogen bonds with water molecules (Koehler et al., 2009;
Gorbunov et al., 2001). According to the latter, the ice forming activity of soot is close
to that of metal oxides. In summary, we conclude that the soot and the carbonaceous25

particles observed in our samples were active as INP.
Based on field experiments and laboratory studies, Pb-bearing particles are in gen-

eral regarded as good ice nuclei (for a detailed discussion refer to Cziczo et al., 2009b).
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In the present study, lead is found mainly in two states, as homogeneous Pb-rich par-
ticles and as Pb-rich inclusions in other INP/IPR. Some fraction of the large homoge-
neous Pb-rich particles might be regarded as artifact, as the Ice-CVI impaction plates
consist of a Pb-bearing aluminum alloy. SEM inspection of the impaction plates re-
vealed the presence of lead particles, which might be resuspended on ice particle im-5

pact. The small lead inclusions in other INP/IPR are not regarded as potential artifact.
However, only a small fraction of the large homogeneous Pb-rich particles found in the
ICE-CVI may be an artifact, as similar particles were also observed in the FINCH+ IN-
PCVI samples, where no Pb-containing aluminum alloy was used. As an exact estimate
of the lead artifact abundance cannot be provided, all homogeneous Pb-rich particles10

are considered as INP/IPR. This assumption also applies to previous studies at the JFJ
station (Ebert et al., 2011; Cziczo et al., 2009b).

The ice nucleation ability of secondary aerosol particles is discussed controver-
sially in the literature. As in the case of soot and carbonaceous matter, secondary
aerosol particles are found in field measurements of INP (Abbatt et al., 2006; Prenni15

et al., 2009b) and in laboratory experiments under cirrus cloud conditions (Hoose and
Möhler, 2012). In contrast, Cziczo et al. (2004) report that organic-rich particles (inter-
nally mixed particles of sulfates and organic spezies) preferentially remain unfrozen.
Based on our data, whereby secondary material is present in many INP/IPR samples
and does not have a high abundance in the total aerosol, we consider these particles20

as INP/IPR.
Sea-salt as INP/IPR was described by Cziczo and Froyd (2014) and Targino

et al. (2006). While crystalline salts were found to be able to act as INP under upper-
tropospheric conditions (Zuberi et al., 2001), there has been a lack in clarifying the pro-
cess by which a hygroscopic and soluble material should act as IN. However, recently25

Wise et al. (2012) explained this behavior by fractional crystallization of the solute com-
ponent under decreasing temperatures. Based on these findings, we consider sea-salt
as INP/IPR.
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The ice nucleation ability of sulfate particles is also discussed controversially in the
literature. Sulfates may act as INP in cirrus clouds in the upper troposphere and lower
stratosphere, both in immersion and deposition modes (Abbatt et al., 2006, and ref-
erences therein; Hoose and Möhler, 2012). Sulfates acting as INP are found in field
experiments when cold temperatures dominate (Twohy and Poellot, 2005), but usually5

not in the warmer mixed phase clouds as encountered during our field experiment. If
we consider the high relative abundance of sulfates in the total aerosol, we cannot ex-
clude the possibility that sulfates are simply an artifact of the INP/IPR discrimination
techniques not having perfect (i.e., 100 %) discrimination efficiency. Thus, we consider
sulfate particles not to be INP/IPR. Nevertheless, we provide data on their abundance.10

Similar considerations apply to the observed droplets.
As explained in the methods section, contamination artifact particles were removed

from the further analysis.
Concluding, we regard silicates and Ca-rich particles, metal oxides, Pb-bearing parti-

cles, soot, carbonaceous particles, secondary particles and sea-salt as “real” INP/IPR,15

while sulfate and droplets are judged as sampling artifacts.

4.2 Relative ice nucleation ability of the different particle classes

By comparing the relative abundance of the different particle classes within the INP/IPR
samples and the total aerosol samples, enrichment factors and the relative ice nucle-
ation efficiency at the given conditions could be calculated. However, this approach is20

hampered due to the very low particle numbers of the INP/IPR samples and the low
abundance of non-sulfate/non-droplet particles in the total aerosol. Nevertheless, some
qualitative statements on the relative ice nucleation efficiency can be made.

While the total aerosol is dominated by sulfate and droplets (Fig. 9), these two com-
pounds were observed at a low abundance in the INP/IPR samples, independently25

of the sampling techniques (Fig. 6). Thus, sulfate and droplets can only have a very
low INP efficiency, or could even be considered as an sampling artifact (see previous
section).

23046

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/23027/2014/acpd-14-23027-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/23027/2014/acpd-14-23027-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 23027–23073, 2014

Single-particle
characterization of

INP and IPR

A. Worringen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

In contrast, the relative abundance of silicates is considerable higher in the INP/IPR
fraction than in the total aerosol, pointing to its high IN efficiency, which is consistent
with earlier results from the JFJ station and from laboratory experiments (Ebert et al.,
2011; Hoose and Möhler, 2012). Recently, feldspar minerals and in particular K-rich
feldspars were discussed as efficient INP (Atkinson et al., 2013; Yakobi-Hancock et al.,5

2013). Despite the fact that we did not determine the mineralogical phase of the silicate
particles, we can show by SEM-EDX that they are not rich in potassium. Thus, it is
concluded that K-rich feldspar particles do not play a role as INP/IPR at Jungfraujoch
in winter. The Ca-rich particles – probably also of terrigenous origin – were not detected
in the total aerosol, which may result from statistical limitations or from a highly variable10

composition. In the supermicron fraction of the INP/IPR samples, however, they appear
with a number abundance ratio of 1 : 10 to 1 : 3 relative to silicates (depending on
method and sample), which is in the range reported for natural mineral dust (Kandler
et al., 2007, 2009; Coz et al., 2009). Thus, they can be considered as similarly effective
as silicates, which is consistent with laboratory experiments for calcite (Zimmermann15

et al., 2008).
Carbonaceous material is also considerably enriched in the INP/IPR samples in com-

parison to the total aerosol. Based on their unspecific morphology and the absence of
tracer elements (e.g., N, P, K) these particles are not regarded as primary biological
particles. It is assumed that the carbonaceous material consists of organic compounds20

which condensed from the gas phase.
Soot is less enriched than silicates and carbonaceous material in the INP/IPR sam-

ples, so it seems to be less efficient as INP. Sea-salt appears as INP/IPR only during
advection of marine air masses.

With regard to the mixing state, particularly the difference between silicates and25

Ca-rich particles is notable. While silicates are usually internally mixed, the Ca-rich
particles do not have a detectable coating. This may indicate that for a silicate particle
a coating is less effective in reducing its IN ability than for a Ca-rich particle, point-
ing to a more pronounced processing (e.g., destruction of the surface structure) of the
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former. However, there is lack of agreement on the influence of coatings on the ice
nucleation ability of silicates in literature. In field experiments, coatings on silicates and
metal oxides are commonly observed (Targino et al., 2006; Chen et al., 1998; Prenni
et al., 2009a). In laboratory experiments, conflicting results are obtained. While Cziczo
et al. (2009a) as well as Hoose and Möhler (2012) found a deactivation of the ice nuclei5

due to coatings, Sullivan et al. (2010) reported that coatings may have no effect on the
ice nucleation ability. Instead, Archuleta et al. (2005) and Zuberi et al. (2002) discuss
mineral dust as efficient nucleus for ice in NH4SO4–H2O aerosols and demonstrated
that mineral particles coated with sulfate increase the freezing temperature up to 10 K
compared to pure sulfate solutions. Richardson et al. (2007) reported that soluble coat-10

ings favor condensation-freezing nucleation and inhibit nucleation by vapor deposition.
But they also mention, that coatings itself may act either to increase or decrease ice
nucleation efficiency independent of the nucleation mechanism.

In summary, the range of the fraction of mixed particles in the present field experi-
ment is similar to previous literature. Chen et al. (1998) reported a fraction up to 25 % of15

INP which were mixtures of sulfates and elements indicative of insoluble particles. The
same relative abundance of mixtures of metal oxides/dust with either carbonaceous
components or salts/sulfates was reported by Prenni et al. (2009a). For the JFJ sta-
tion, a slightly lower fraction of internally mixed particles was found during the CLACE
5/6 campaigns: 9–15 % by Ebert et al. (2011) and up to 15 % by Kamphus et al. (2010).20

4.3 Comparison between FINCH+ IN-PCVI, Ice-CVI and ISI

A reasonable agreement between the different sampling techniques is obtained for the
major particle groups observed among the INP/IPR. However, the variation in INP/IPR
composition due to meteorological conditions in connection with the non-parallel sam-
pling introduces a systematic error. The non-parallel sampling could not be avoided25

during the present field campaign, as the sampling techniques were not yet in a state
allowing for synchronized operation. Consequently, INP/IPR composition snapshots
from different time periods needed to be integrated for comparison.
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In contrast, extreme differences in the mixing state were observed depending on
sampling technique (Table 3). While the difference in relative abundance of internally
mixed particles between Ice-CVI and ISI might be explained by the considerably differ-
ent sampling times, this is not the case for FINCH+ IN-PCVI. In particular, it is surpris-
ing, that FINCH+ IN-PCVI measures in general higher abundances of internally mixed5

particles in comparison to the other two methods, as from the ice-nucleating mecha-
nisms (Table 1) – i.e. the lack of contact freezing in FINCH+ IN-PCVI – the opposite
effect would be expected. This demonstrates that the influence of the systematic differ-
ences of the INP/IPR-separating techniques on the composition of the INP/IPR is not
yet fully understood.10

4.4 Comparison with other field experiments

If all INP/IPR particles of the three sampling methods are summed up, the following
averaged INP/IPR composition of the whole field campaign is obtained: 52 % terrige-
nous particles (38 % silicates, 9 % metal oxides, 5 % Ca-rich particles), 14 % C-rich
(12 % carbonaceous particles, 2 % soot), 1 % secondary particles, 11 % sulfate, 11 %15

droplets, 4 % sea-salt, 5 % Pb-bearing particles, and 2 % other particles.
A comparable INP composition was reported by Prenni et al. (2009a) for the field

campaign M-PACE with 64 % terrigenous particles (39 % metal oxides/dust+25 % mix-
tures of metal oxides/dust with either carbonaceous components or salts/sulfate), and
35 % carbonaceous particles. Also, Targino et al. (2006) reported an IN composition of20

57.5 % alumosilicates, Fe-rich, and Si-rich, 23.3 % low atomic number (presumably or-
ganic), and 6.7 % sea-salt. They observed sulfur coatings for all groups indicating age-
ing and in-cloud processing. For the CLACE 6 field experiment Kamphus et al. (2010)
found an IPR composition of 60 % mineral dust and 25 % sulfate/organic. The remain-
ing 15 % were mixed particles and biomass burning particles. In the same field exper-25

iment, Pb-bearing particles, complex internal mixtures with silicates and metal oxides
as major component as well as internal mixtures of secondary aerosol with carbona-
ceous material were found to be strongly enriched in IPR relative to the interstitial
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aerosol and, thus, regarded as effective INP (Ebert et al., 2011). An overview of IPR
compositions found during 13 field campaigns of cirrus clouds is given by Cziczo and
Froyd (2014). The main groups were mineral dust, metals, BC/soot, sea-salt, sulfate,
and biomass burning.

In summary, it can be concluded that the mean composition of the INP/IPR encoun-5

tered at the JFJ station during our field campaign fits well into the range observed in
previous experiments.

Similar to the ice nucleation efficiency (as determined from the observed enrichment
of particle groups within INP/IPR relative to the aerosol) reported in the present study
(see above), Chen et al. (1998) and DeMott et al. (2003) found an enrichment of metal-10

lic, crustal, and carbonaceous fraction.
The observed high variability in INP/IPR composition at the JFJ station found in

the present study is consistent with other field experiments. For example, Targino
et al. (2006) reported a strong dependency of INP composition on air mass history.
Continentally-influenced air masses contained mainly mineral dust residuals, while15

clean air masses were dominated by low-Z (presumably secondary aerosol) and sea-
salt particles. Sulfates are mainly found in field experiments when cold temperatures
dominate (Cziczo and Froyd, 2014; Twohy and Poellot, 2005). A high variability of INP
composition as function of air mass history is also reported by DeMott et al. (2003).

A relative high abundance of Pb-bearing particles, in particular internally mixed ones,20

seems to be characteristic for IPR at the JFJ station. They were identified by earlier
measurements (Ebert et al., 2011; Cziczo et al., 2009b) and during the present filed
campaign. However, the fraction of Pb-bearing particles in the whole INUIT campaign
is 1 % for FINCH+ IN-PCVI, and 10 % for Ice-CVI. In contrast, a higher fraction of up
to 20 % was found during CLACE 5. As helicopter flights – where Pb-rich particles25

might be emitted due to leaded fuel usage – observed around the Jungfraujoch station
were more frequent during CLACE 5 than during the present field campaign, this would
indicate a considerable contribution of local emission to the IN formation at JFJ station.
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4.5 Comparison between scanning electron microscopy analysis and laser
ablation mass spectrometry

The results of energy-dispersive X-ray microanalysis in the scanning electron micro-
scope (SEM-EDX) of the collected INP/IPR particles can be compared to the findings
of online laser ablation mass spectrometry (LA-MS). Unfortunately, both techniques5

could not be run in parallel. Due to the low INP/IPR concentrations, it was necessary to
sum up all available data, which may lead to systematic errors due to a high variation
in the chemical composition of the IPR fraction as function of changing air masses and
meteorological conditions. Furthermore, for a comparison between SEM-EDX and LA-
MS a more general particle classification scheme, combining the detailed SEM-EDX10

groups, was necessary.
The average particle group number abundance, derived by SEM-EDX – separately

for all IPR from ISI and Ice-CVI – is compared in Fig. 11 to the results of the laser abla-
tion mass spectrometer ALABAMA (Schmidt et al., 2014). The most obvious difference
between the two approaches is the presence of 10–18 % of secondary particles (mostly15

mixtures of sulfates/nitrates and/or organics), pure sulfates and droplets (residuals of
volatile species like nitrates and organics) in SEM-EDX. These groups are completely
absent in LA-MS. This difference may be explained by the fact that anions were not
measured by LA-MS during the present campaign.

For the other groups, a fair agreement of the results is obtained. First, the sum of20

sea-salt, carbonaceous material, soot and mineral dust (orange and green groups)
contributes 70–90 % to the IPR. Second, metal oxides (based on SEM-EDX mainly
iron oxides) occur at an abundance of 5–10 %. Third, Ice-CVI samples contain Pb-rich
particles (5–10 %), while these particles are absent in ISI.

However, pronounced discrepancies exist between SEM-EDX and LA-MS data, in25

particular for Ice-CVI. For this sampling technique, a lower abundance of carbona-
ceous matter is found by SEM-EDX, and a higher abundance of silicates. This quan-
titative comparison of compositional data from both analysis techniques is hampered
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by the different approach in particle characterization. The particle classification with
SEM-EDX relies on the characteristic X-ray signals, which can be used to quantify the
chemical composition of a particle. Our classification scheme uses only the major ele-
ments detected inside a particle to assign it to an according group. Minor elements are
mostly neglected in particle classification, trace elements cannot be measured at all.5

In contrast, single particle LA-MS relies on ionized compounds, so ionization efficiency
plays a major role. Thus, strong signals often originate from the atoms or molecules,
which can be best ionized in LA-MS, but are not necessarily a major component of the
particles. While LA-MS works usually well for externally mixed particles, problems can
arise for the classification of internally mixed particles. In our particular case, it cannot10

be excluded that, for example, a silicate particle with a thin organic coating is classified
as silicate in SEM-EDX (based on Si as major element), but as carbonaceous particle
in LA-MS (based on a strong signal of ionized carbonaceous matter). This example
clearly demonstrates the need for further systematical comparison between these two
analytical techniques.15

5 Summary and conclusions

For the first time, the chemical composition of individual INP/IPR collected by three
techniques – ISI, FINCH+ IN-PCVI and Ice-CVI – was analyzed in a field experi-
ment. In winter, the INP/IPR composition at the JFJ station is composed of five main
groups: the dominating potential terrigenous silicates/Ca-rich particles, carbonaceous20

particles, the metal oxides/hydroxides like Fe-, Ti, or Al-oxides/hydroxides, soot, and
probably soluble particles like sea-salt. Identified sulfates and droplets were not con-
sidered as INP/IPR. Lead inclusions occur in several INP/IPR, while large homoge-
neous Pb-rich particles must be considered partially as artifacts. As the composition is
in principle similar to earlier field experiments, and the methods agree roughly regard-25

ing major and minor components, we consider this experiment as a successful step in
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providing INP/IPR chemical composition by different techniques. This is supported by
the agreement regarding in the maximum of INP/IPR size distributions.

For all three INP/IPR separation techniques, different contamination artifacts and
potential sampling artifacts were identified. These artifacts are easily detectable by the
chemical and morphological analysis. In contrast, counting or size distribution tech-5

niques would consider these contamination and sampling artifacts as real INP/IPR
and, consequently, overestimate the INP/IPR concentration. Thus, the present work
provides information suitable for correction of counting techniques, for the contamina-
tion artifacts as well as for sampling artifacts. While for the former correction is neces-
sary, interpretation of the latter might change with advancing knowledge regarding the10

INP/IPR abilities of soluble compounds.
Deeper data investigation reveals that beyond the agreement in maximum of the

INP/IPR size distribution there are considerable differences between the instruments
pointing to different efficiencies in INP activation and IPR separation. This is particularly
obvious when we consider the large difference in internally-mixed particle abundance.15

While a part of these discrepancies might be explained by atmospheric variability in
connection with non-parallel sampling (an issue, which is expected to be overcome
in future experiments by increased stability in instrument operation), they also indi-
cate lack in understanding regarding the chemical selectivity of the different INP/IPR-
discriminating techniques.20
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Table 1. Techniques and operation principles used for ice-nucleating particle (INP) and ice
particle residual (IPR) differentiation.

INP/IPR-separating
technique

Principle of operation Mode of
operation

Ice nu-
cleation
location

Separated
particle
type

Freezing
mechanisms

Size fraction
of sampled
ice particles

Fast Ice Nucleus Counter
(FINCH)+ Ice Nuclei
pumped Counter-flow
Virtual Impactor
(IN-PCVI)

activation of INP under
suitable thermodynamic
conditions, separation of
INP by inertia

in-cloud and
out of cloud,
discontinu-
ous

instrument INP deposition, con-
densation, im-
mersion

d > 2 µm

Ice-Counterflow Virtual
Impactor (Ice-CVI)

removal of supercooled
droplets, transmission of
ice particles

in-cloud,
continuous

atmosphere IPR deposition,
condensation,
immersion,
contact

5 < d <
20 µm

Ice Selective Inlet (ISI) use of Bergeron–
Findeisen process to
evaporate supercooled
droplets, transmission of
ice particles

in-cloud,
continuous

atmosphere IPR deposition,
condensation,
immersion,
contact

4.9µm < d <
20 µm
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Table 2. Classification criteria for particle classes and particle groups. Common features for
certain particle types not used for classification are given in parentheses.

Class Group Chemistry Morphologyy Mixing state Beam stability

Carbonaceous carbonaceous C non-soot no inclusion
carbonaceous+ inclusion C non-soot inclusion

Secondary secondary C, O, S

Sulfate sulfate S, O, (Na, K) no residual unstable
sulfate+ inclusion S, O, (Na, K) residual unstable

Soot soot C soot-like no coating
soot mixture C soot-like coating

Sea-salt sea-salt Na, Cl, (K, Mg) no inclusion
sea-salt+ inclusion Na, Cl, (K, Mg) inclusion

Ca-rich Ca-rich Ca, O, (Mg, S, C) no inclusion
Ca-rich+ inclusion Ca, O, (Mg, S, C) inclusion

Metal oxide metal oxide Fe, Al, Ti, (Mn) no coating
metal oxide+ coating Fe, Al, Ti, (Mn) coating

Silicate silicate Si, Al, (K, Ca, Mg, Fe, Ti) no coating
silicate mixture Si, Al, (K, Ca, Mg, Fe, Ti) coating or

agglomerates

Pb-bearing Pb-bearing Pb present

Droplet droplet particle centered
in ring of
smaller particles

Other other
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Table 3. Relative abundance of mixed/coated particles in each particle class for each technique.

Particle group FINCH+ IN-PCVI Ice-CVI ISI

Silicate 61 % 37 % 59 %
Ca-rich 8 % 9 % 9 %
Metal oxide 67 % 40 % 4 %
Carbonaceous 64 % 29 % 7 %
Soot 14 % 6 % 13 %
Sea-salt 54 % 9 % 10 %
Sulfate 2 % 4 % 0 %
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Figure 1. Atmospheric conditions and INP/IPR sampling periods in February 2013. Times are
given in UTC. Particle number concentrations were taken from the World Data Centre for
Aerosols homepage (WDCA, 2014). Temperature and wind direction were provided by the
Jungfraujoch station operated by International Foundation High Altitude Research Stations
Jungfraujoch and Gornergrat. Cloud presence was detected by measuring the liquid water
content using a Particulate Volume Monitor (PVM-100, Gerber Scientific, Reston, VA, USA)
and a Cloud Droplet Probe (Droplet Measurement Technologies, Boulder, CO, USA). Sampling
phases are marked by colored bars. Homogeneous time periods with particle sampling times
are marked.
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Figure 2. Secondary electron images of contamination artifact particles and according energy-
dispersive X-ray spectra with characteristic X-ray peaks of elements marked. Elements con-
tained in the sample substrate are given in parentheses.
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Figure 3. Box-plots of the different contamination artifact particles for each sampling device
(top: ISI, middle: FINCH+ IN-PCVI, bottom: Ice-CVI). Shown are minimum, lower quartile, me-
dian, upper quartile, and maximum.
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Figure 4. Secondary electron images of droplets with their typical morphology of a halo around
a residue.
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Figure 5. Box-plots of impacted droplet and non-droplet sulfate, sea-salt, and secondary
aerosol abundance for ISI, FINCH+ IN-PCVI and Ice-CVI. Shown are the minimum, lower quar-
tile, median, upper quartile, and maximum.
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Figure 6. Relative number abundance (all samples) of different particle groups, separately for
ISI, FINCH+ IN-PCVI and Ice-CVI as well as for supermicron and submicron INP/IPR. The total
number of analyzed particles is shown above the bars.
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Figure 7. Relative number abundance of different particle groups among INP/IPR for 2 Febru-
ary as determined by FINCH+ IN-PCVI and Ice-CVI.
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Figure 8. Size distribution of relative abundance of major INP/IPR components for ISI,
FINCH+ IN-PCVI and Ice-CVI. Particle groups were combined according to potential sources
to obtain a sufficient number of particles in each size interval.

23070

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/23027/2014/acpd-14-23027-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/23027/2014/acpd-14-23027-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 23027–23073, 2014

Single-particle
characterization of

INP and IPR

A. Worringen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

0

10

20

30

40

50

60

70

80

90

100

re
la
ti
v
e
n
u
m
b
e
r
a
b
u
n
d
a
n
c
e
,
%

< 0.5 µm 0.5 - 1 µm > 1 µm

Carbonaceous

Carbonaceous + inclusion

Secondary

Sulfate

Sulfate + inclusion

Soot

Soot mixture

Sea-salt

Sea-salt + inclusion

Ca-rich

Ca-rich + inclusion

Metal oxide

Metal oxide + coating

Silicate

Silicate mixture

Pb-bearing

Droplet

Other

308 403 69 total number of particles

Figure 9. Composition (relative number abundance of different particle groups) of the total
aerosol as a function of particle size.
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Figure 10. Comparison of the composition/mixing state of Pb-bearing particles from INUIT and
CLACE 5.
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Figure 11. Comparison of particle class abundance determined by SEM-EDX and LA-MS for
IPR sampled by ISI and Ice-CVI. To allow for a comparison of the different analytical approaches
of SEM-EDX and LA-MS, classes were combined accordingly.
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